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Abstract 

The impulse back the sitting treatise is to study the properties of magnetohydrodynamic flow and heat transfer 

for Casson-Carreau hybrid nanofluid under the effects of heat sink/source, magnetic field, thermal radiation and slip 

conditions in a Darcy-Forchheimer porous medium with injection/suction effect. The examined hybrid nanofluid 

includes rheological action of non-Newtonian and pursues fluid paradigm of Casson-Carreau considering water as a 

base fluid, whereas Aluminium oxide and Copper as a hybrid nanoparticles. In this model, the formularization of the 

Casson-Carreau hybrid nanofluid has been used for expressing boundary layer problem. The obtained differential 

equations are switched by using non-similar transformations and then solved numerically. Some of the outcomes of the 

examination in both Casson-Carreau models influence the upsurging transfer of heat by thermal radiation and 

blowing/suction parameters. Moreover, skin friction coefficient display identical behaviour for thermal radiation, but 

the opposite behaviour is noticed in the state of the suction/injection parameter. 

Keywords: Hybrid nanofluid; Circular cylinder; Thermal radiation; Injection/suction; Heat source/sink.  

 

1. Introduction 

Many flow properties in modernistic engineering are not intelligible using the type of Newtonian fluid.  As a result, 

non-Newtonian fluid theory has proved helpful. Casson and Carreau fluids are two of these fluids. Fluids of Casson 

and Carreau are categorized as the most widely used non-Newtonian fluids, which have numerous uses in processing 

of food, bioengineering, operations of digging and metallurgy. For portending the flow demeanor of tincture-oil 

hangs, Casson [1] introduced paradigm of Casson fluid. The concentration, temperature and velocity for convection 

nanofluid flow with gravity-driven via a wiggling perpendicular sheet in a porous system with magnetic field effect 

were analysed by Kataria and Mittal [2]. The impacts of Dufour, radiative and dissipation on magneto-Casson fluid 

flow with free convective across a columnar permeable sheet were discussed by Rajakumar et al. [3]. 

Magnetohydrodynamic (MHD) double‐diffusive flow of Casson delitescent in a non‐Darcian porous material with 

effects of thermodiffusion and Newtonian heating is investigated by Seth et al. [4] considering the key parameters of 

Casson liquid flow characteristics. In this respect, very newly Mittal and Patel [5] studied motion of Brownian and 

thermophoresis on flow of two‐dimensional (2D) crossbred convection MHD Casson fluid with heat source and 

thermal radiation. El-Zahar et al. [6] examined time-dependent Casson flow with MHD mixed convection in the 

stagnation point of an impulsively spinning sphere. 

Using Carreau kind, a lot of scholars have looked into and investigated a diverse range of biological and 

industrial flow problems. For example, the action of slanted MHD Carreau fluid filled with nanoparticles in 2D 

channel was examined analytically by Akram [7]. Hayat et al. [8] used the model of Carreau to explore the 

convection of mixed impact on wavy flow of nanofuid, discovering that the number of Weissenberg and index of 

energy law affect inversely on shear stress. Vajravelu et al. [9] published a research on Carreau model across the 

phenomena of peristaltic with environment of magnetic and slip velocity using theory of perturbation on tiny 

amplitudes of number of Weissenberg and confirmed that velocity slip extending the volume of bolus. Kothandapani 
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et al. [10] conducted research on peristaltic flow for Carreau model conductive electrically in porous materials along 

a tapered conduit. They found that Carreau fluid estimated high pressure than Newtonian fluid in 2D channel. 

Newly, several authors [11-16] investigated non-Newtonian fluid flows in various geometrical models. 

Owing to multiple technical and engineering applications, it is significant to grasp and explore the flow of 

MHD. MHD convective flow of the visually thick nanofluid via a perpendicular oscillating surface with the action of 

radiation was assayed by Kataria and Mittal [17]. Raghunath et al. [18] recently found mass and heat transfer on MHD 

non-Newtonian fluid flow via an infinite porous vertical surface. The convection of MHD hybrid nanoliquid (Al2O3–

Cu/Water) with interior heat absorption/generation in a sloping porous bore was checked by Chamkha et al. [19]. 

Actions of Hall current, chemical reaction, thermal radiation and heat absorption on convective MHD flow over a 

permeable sheet were discussed by Obulesu et al. [20]. Flow of free convection of an unsettled MHD nano-fluid in a 

sloping square bore including a heated circular hurdle was investigated by Mansour et al. [21]. Also, it has been 

discovered that Nusselt number is shown to be sensitive to size of the central obstruction and it decreases enough as 

the inner cylinder radius grows. Abdelhafez et al. [22] studied mixed convection of MHD hybrid nanofluid flow via a 

stretching and shrinking permeable plate embedded in a poroud system. Actions of yield stress and chemical reaction 

on magnetic 2-phase nanoliquid flow in a poroud regime with thermal ray were checked by Abdelhafez et al. [23]. 

The present paper has comparison of two diverse kinds of non-Newtonian hybrid nanofluids: Casson-Carreau 

paradigm under different key parameters.  

 

2. Formulation and Physical Model 

 Time-independent MHD natural heat transfer convection flow from the horizontal circular cylinder of 

Carreau-Casson hybrid nanofluid is investigated. Fig. 1 depicts the model of flow and associated coordinate regime. 

𝐵0 is the strength of magnetic field, which is typically applied to the flow. The coordinate of 𝑥 is pinpointed via the 

horizontal cylinder diameter from the least point and the 𝑦-axis is pinpointed normal to the plate. Regarding the 

vertical 0 ≤ 𝜙 ≤  𝜋 and the trend angle of 𝑦-axis is 𝜙 = 𝑥 /𝑎. With rev of gravity, the 𝑔 works down. Initially, both 

the horizontal cylinder and fluid are kept at the same temperature. They are immediately raised to a temperature 𝑇𝑤  >

𝑇∞, it is the ambient warmth of the fluid that remains unconverted. 

 Tensor of stress is known as for Carreau fluid 

𝜏𝑖𝑗 = 𝜂0 [1 +
(𝑛−1)

2
(𝛤�̇�)

2
�̇�

𝑖𝑗
],                                                                                                         (1) 

where 𝜏𝑖𝑗, 𝜂0, 𝛤 and 𝑛 are refer to the supplemental tensor of stress, viscidity of zero shear average, value of time and 

power-law indicator, respectively.  

Where �̇� = √
1

2
∑ ∑ �̇�𝑖𝑗 �̇�𝑖𝑗𝑗𝑖 = √

1

2
Π,                                                                                                 (2) 

fluid of Casson have 2D steady flows presented by (see Ref. [24]) 

𝜏𝑖𝑗 = {
2 (𝜇𝐵 +

𝑝𝑦

√2Π
) 𝑒𝑖𝑗 , Π ≥ Π𝑐

2 (𝜇𝐵 +
𝑝𝑦

√2Π𝑐
) 𝑒𝑖𝑗 , Π < Π𝑐

,                                                                                                 (3) 

the second strain tensor invariant is Π. Depending on the above assumptions, the controlling equations (see Refs. [24-

26]) are: 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                                                                                                                     (4) 
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                                                                                                                                                (5)  
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𝜕𝑦2 +
𝑄0

(𝜌𝑐𝑝)ℎ𝑛𝑓
(𝑇 − 𝑇∞),                                           (6)  

the conditions of boundary put in the natural stream and at the surface of the cylinder are 
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𝑢 = 𝑁0𝜇ℎ𝑛𝑓 (1 +
1

𝛽∗)
𝜕𝑢

𝜕𝑦
, 𝑣 = 𝑣𝑤 , 𝑇 = 𝑇𝑤 + 𝐾0

𝜕𝑇

𝜕𝑦
   𝑎𝑡 𝑦 = 0,

𝑢 → 0, 𝑇 → 𝑇∞  𝑎𝑠 𝑦 → ∞,
}                                                   (7) 

here 𝑁0, 𝐾0 and 𝑇∞ are the parameters of slip velocity, thermal slip and free flow temperature. The case of no-slip 

when 𝑁0 = 𝐾0 = 0. 

The equations of Cauchy-Riemann 𝑢 = 𝜕𝜓 / 𝜕𝑦 and 𝑣 = −𝜕𝜓/𝜕𝑥 define the stream function 𝜓. Hence the 

equation of continuity is promptly fulfilled. 

Proper dimensionless quantities are 

𝜂 =
𝑦

𝑎
𝐺𝑟1 4⁄ , 𝜉 =

𝑥

𝑎
, 𝑓(𝜂, 𝜉) =

𝜓

𝜈𝜉𝐺𝑟1 4⁄ , 𝜃(𝜂, 𝜉) =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
,                                                                (8) 

 the converted equations are: 

𝜉 (
𝜕𝑓′

𝜕𝜉
𝑓′ −

𝜕𝑓

𝜕𝜉
𝑓′′) =

𝜇ℎ𝑛𝑓 𝜇𝑓⁄

𝜌ℎ𝑛𝑓 𝜌𝑓⁄
[(1 +

1

𝛽∗) 𝑓′′′ +
3

2
(𝑛 − 1)𝑊𝑒𝑓′′2
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(𝜌𝛽)ℎ𝑛𝑓 (𝜌𝛽)𝑓⁄

𝜌ℎ𝑛𝑓 𝜌⁄

𝑠𝑖𝑛(𝜉)

𝜉
𝜃 − (

𝜎ℎ𝑛𝑓 𝜎𝑓⁄

𝜌ℎ𝑛𝑓 𝜌𝑓⁄
𝑀 +

𝜇ℎ𝑛𝑓 𝜇𝑓⁄

𝜌ℎ𝑛𝑓 𝜌𝑓⁄
𝐾) 𝑓′ − (1 + 𝐹𝑟𝜉)𝑓′2,                                                                                                          (9) 

𝜉 (
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𝜕𝜉
𝑓′ −

𝜕𝑓

𝜕𝜉
𝜃′) =

1

𝑃𝑟

(𝜌𝑐𝑝)
𝑓

(𝜌𝑐𝑝)
ℎ𝑛𝑓

(
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+

4

3
𝑅) 𝜃′′ + 𝑓𝜃′ +

(𝜌𝑐𝑝)𝑓

(𝜌𝑐𝑝)ℎ𝑛𝑓
𝑆𝜃,                                           (10) 

the converted non-dimensional boundary conditions are:  

𝑓(0, 𝜉) + 𝜉
𝜕𝑓(0,𝜉)

𝜕𝜉
= 𝑓𝑤, 𝑓′(0, 𝜉) =

𝑆𝑓

(1−𝜑1)2.5(1−𝜑2)2.5 (1 +
1

𝛽∗) 𝑓′′(0, 𝜉),

𝜃(0, 𝜉) = 1 + 𝑆𝑇𝜃′(0, 𝜉) ,

𝑓′(∞, 𝜉) → 0, 𝜃(∞, 𝜉) → 0.

}                                  (11)                                                                                                                                                                          

Where 𝑊𝑒 = (
𝜈𝑓𝑥𝐺𝑟3 4⁄ 𝛤

𝑎3 )
2

 refers to Weissenberg number, Grashof number defined as 𝐺𝑟 =
𝑎3𝑔𝛽𝑓(𝑇𝑤−𝑇∞)

𝜈𝑓
2 , 𝑃𝑟 =

𝜇𝑓(𝑐𝑝)
𝑓

𝑘𝑓
 is the factor of prandtl, 𝑀 =

𝑎2𝜎𝑓𝐵0
2

𝜌𝑓

𝐺𝑟−1 2⁄

𝜈𝑓
 is the parameter of magnetic, the permeability 𝐾 =

𝑎2𝐺𝑟−1 2⁄

𝐾1
, F𝑟 =

𝐶𝑏

√𝐾
𝑎 is the number of Forchheimer, radiation of thermal 𝑅 =

4𝜎∗𝑇∞
3

𝑘∗𝑘
, 𝑆 =

𝑄0𝑎2

(𝜌𝑐𝑝)𝑓𝐺𝑟1 2⁄ 𝜈𝑓
 where 𝑆 > 0 refers to source of 

heat and 𝑆 < 0 symbolizes to heat sink, 𝑓𝑤 = −
𝑎𝑣𝑤

𝜈𝐺𝑟1 4⁄  refers to suction when 𝑓𝑤 > 0 and injection when 𝑓𝑤 < 0, 𝑆𝑓 =

𝑁0𝜇𝑓
𝐺𝑟1 4⁄

𝑎
 is the parameter of slip velocity and 𝑆𝑇 = 𝐾0

𝐺𝑟1 4⁄

𝑎
 is the parameter of thermal jump. 

The number of Nusselt 𝑁𝑢 and the coefficient of skin friction 𝑐𝑓 are defined as: 

𝑐𝑓 =
𝑎2𝜏𝑤(𝑥)

𝜌𝜈2  ,                                                                                                                                  (12) 

𝑁𝑢 =
𝑎𝑞𝑤

(𝑇𝑤−𝑇∞)𝑘𝑓
 ,                                                                                                                            (13) 

where  

𝜏𝑤 = 𝜇ℎ𝑛𝑓 [(1 +
1

𝛽∗) (
𝜕𝑢

𝜕𝑦
) +

(𝑛−1)Γ

2
(

𝜕𝑢

𝜕𝑦
)

3

]
𝑦=0

, 𝑞𝑤 = −𝑘ℎ𝑛𝑓 (
𝜕𝑇

𝜕𝑦
)

𝑦=0
−

16𝜎∗𝑇∞
3

3𝑘∗ (
𝜕𝑇

𝜕𝑦
)

𝑦=0
,            (14) 

and hence, we obtained that 

𝐺𝑟−3 4⁄ 𝐶𝑓 = 𝜉𝑓′′(0, 𝜉)
𝜇ℎ𝑛𝑓

𝜇𝑓
{(1 +

1

𝛽∗) +
𝑛−1

2
[𝑊𝑒𝑓′′(0, 𝜉)]2},                                                      (15) 

𝐺𝑟−1 4⁄ 𝑁𝑢 = − (
𝑘ℎ𝑛𝑓

𝑘𝑓
+

4

3
𝑅) 𝜃′(0, 𝜉),                                                                                           (16) 
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3. Numerical approach 

The solutions of nonlinear Eqs. (9)-(11) in locked form are not actually feasible. By using RKF45 with shooting 

technique, we can solve this problem with various parameters values. The action of involved different variables on the 

physical quantities as 𝑓 ′(𝜂, 𝜉), 𝜃(𝜂, 𝜉), 𝐺𝑟−3 4⁄ 𝐶𝑓, and 𝐺𝑟−1 4⁄ 𝑁𝑢 are displayed pictorially. 𝛥𝜂 = 0.01 is the step size. 

We presumed a convenient value for away field boundary-condition in (11), i.e. 𝜂 → ∞, say 𝜂∞. 

𝑓′(𝜂∞, 𝜉) = 𝜃(𝜂∞, 𝜉) → 0                                                                                                   (17) 

 

4. Explanations and Outcomes 

 Table (1) shows the formulation of hybrid nano-fluid characteristics that was used. Table (2) shows the 

thermophysical characteristics of the standard fluid H2O as well as the Al2O3/Cu nanoparticles. To confirm the 

thoroughness of the used method calculations and solutions, previous outcomes declared by Refs. [30-33] are matched 

with 𝐺𝑟−3 4⁄ 𝐶𝑓 and 𝐺𝑟−1 4⁄ 𝑁𝑢  of Newtonian fluid (i.e. 𝑛 = 1 and 𝛽∗ → ∞), respectively, for diverse 𝜉 values in the 

case of 𝑀 = 𝐹𝑟 = 𝑆𝑓 = 𝑆𝑇 = 𝑓𝑤 = 𝜑1 = 𝜑2 = 0 and 𝑃𝑟 = 1.0 . The comparison effects are abstracted in tables (3) 

and (4). The present findings display outstanding consistency with those obtained from the preceding literature as seen 

in tables (3) and (4). For ensuring that the numerical approach employed in this inquiry is reliable and accurate, we 

introduced in table (5) the computational values of 𝐺𝑟−3 4⁄ 𝐶𝑓 and 𝐺𝑟−1 4⁄ 𝑁𝑢 for different values of 𝜑1, 𝜑2, 𝑆𝑇, 𝐹𝑟, 𝑅 

and 𝑓𝑤 in both models of Casson-Carreau.  

Figs. 2 and 3 expose the impact of 𝑀 and 𝐹𝑟 on 𝑓′(𝜂, 𝜉) for Carreau-Casson hybrid nanofluid. Since the 

experiences of magnetic field to be doubled, therefore component of 𝑓′ seems to be lowered for Carreau-Casson cases. 

But, the opposite trend is observed when 𝜂 > 5.2 in fluid of Carreau. The source for this is that when the domain of 

magnetic is activated, it creates Lorentz forces, which resist the fluid flow. Figs. 4 and 5 reflect the contrast of  𝜃  

profile with growing Forchheimer number and magnetic field. It is detected that an increase happens in temperature 

with growing amounts of 𝑀 and 𝐹𝑟. As Lorentz force influence on 𝑓′ causes friction on the flux, causing great heat 

energy.  

Figs. 6 and 7 present the effect of 𝑓′ profile with 𝑅 and 𝐾 parameters in Carreau-Casson fluids, respectively. It 

is cleared that 𝑓′ has growing conduct for considerable values of 𝑅 but 𝑓′ has diminishing conduct for increasing 

permeability in both cases of hybrid nanofluids as in Figs. 6 and 7. The thermal radiation boosts the transmission and 

development of additional heat into the flux, which aids increase the temperature as seen in Figs. 8 and 9. 

Figs. 10 and 11 exhibit the effect of 𝑓𝑤 and 𝑆𝑓 on 𝑓′(𝜂, 𝜉) for two models of Carreau-Casson hybrid nanofluids. 

It is noted that after reaching the higher value of the blowing/suction parameter, the velocity profiles decrease as the 

vigor of 𝑓𝑤 increases. The outcomes indicate a decrease in temperature with progressing values of 𝑓𝑤 and 𝑆𝑓 as noted 

from Figs. 12 and 13. In reality, the expansion in increasing the velocity slip coefficient causes the temperature to drop 

to the surface and this may be the reason for the decreased sense of velocity. 

The profiles of velocity under the action of 𝑆 and 𝑆𝑇 are portrayed when other parameters are constants in Figs. 

14 and 15. Parameters S and ST have the same effect for both Carreau-Casson fluids on f ′(η, ξ) as explained in Figs. 

14 and 15. It is evident that when ST increases in the region of the cylinder surface, the velocity decreases consistently. 

As a result, increasing the value of the thermal jump parameter ST causes the flow to decelerate and the boundary layer 

to cool. Also, it is discovered that the thickness of the momentum boundary layer significantly increases when S is 

upsurged. Figs 16 and 17 are drawn to show the characteristic of thermal profile for both fluid paradigms with η for 

diverse values of S and ST. It is deduced that θ(η, ξ) drops when 𝑆𝑇 boosts. Increasing in 𝑆 causes increment in 

temperature. Elevated amounts of 𝑆 provide additional energy to the operating system, resulting in an increase in 

thermal boundary layer thickness in two models.  

The schematics visualizations of the drag force conduct due to diverse amounts of 𝑓𝑤 and 𝑅 against 𝜉 are 

plotted in Figs. 18 and 19. Here, we noted that 𝐺𝑟−3 4⁄ 𝐶𝑓 is diminished by boosting 𝜉 and 𝑓𝑤 parameters, but boosting 

in thermal radiation leads to rise in coefficient of skin friction in both Casson-Carreau paradigms. The factor of 
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Nusselt scheme is studied from Figs. 20 and 21 for diverse 𝑅 and 𝑓𝑤. It can be proven that increasing value of both 𝑅 

and 𝑓𝑤 parameters, number of Nusselt are raised. 

 

5. Conclusion 

The mathematical hybrid model for flow and heat transfer under the action of thermal radiation, heat 

sink/source, magnetic field and slip conditions with injection/suction in a Darcy-Forchheimer porous model on non-

Newtonians hybrid nanoliquid is checked, and the major outcomes are as next: 

▪ An improvement in parameters of heat and thermal radiation, yields enhancement in the velocity 

profile, while the velocity reduces for higher values of 𝑆𝑓 and 𝑆𝑇 parameters in both fluid models. 

▪ The profile of 𝑓′(𝜂, 𝜉)  is reduced for higher values of 𝑀, 𝐾 and 𝑓𝑤 parameter in Carreau-Casson fluid. 

▪ Any boost in parameters of blowing/suction, slip velocity and thermal slip causes a lessening trend for 

temperature profile in two cases of fluids. 

▪ The profile of 𝜃(𝜂, 𝜉) is raising with increasing in magnetic field, permeability of porous regime, 

rhermal radiation and heat sink/source parameters. 

▪ In both discussed models, a raise in radiation of thermal and suction/blowing has a tendency to upsurge 

the heat transfer, whereas it decreases with raising in 𝜉. 

▪ The number of Nusselt diminishes with greater amounts of thermal ray, but it proves against 

orientation when mixed convection and blowing/suction are increased in both models. 

 

 
Fig. 1. The applied physical model 
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Fig. 2. 𝑓′(𝜂, 𝜉) vs. 𝐹𝑟 and 𝑀 in Carreau case. 

 

 
Fig. 3. 𝑓′(𝜂, 𝜉) vs. 𝐹𝑟 and 𝑀 in Casson case. 
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Fig. 4. 𝜃(𝜂, 𝜉) vs. 𝐹𝑟 and 𝑀 in Carreau case. 

 

 
Fig. 5. 𝜃(𝜂, 𝜉) vs. 𝐹𝑟 and 𝑀 in Casson case. 
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Fig. 6. 𝑓′(𝜂, 𝜉) vs. 𝑅 and 𝐾 in Carreau case. 

 

 
Fig. 7. 𝑓′(𝜂, 𝜉) vs. 𝑅 and 𝐾 in Casson case. 
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Fig. 8. 𝜃(𝜂, 𝜉) vs. 𝑅 and 𝐾 in Carreau case. 

 

 

 
Fig. 9. 𝜃(𝜂, 𝜉) vs. 𝑅 and 𝐾 in Casson case. 
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Fig. 10. 𝑓′(𝜂, 𝜉) vs. 𝑓𝑤 and 𝑆𝑓 in Carreau case. 

 
Fig. 11. 𝑓′(𝜂, 𝜉) vs. 𝑓𝑤 and 𝑆𝑓 in Casson case. 
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Fig. 12. 𝜃(𝜂, 𝜉) vs. 𝑓𝑤 and 𝑆𝑓 in Carreau case. 

 

 
Fig. 13. 𝜃(𝜂, 𝜉) vs. 𝑓𝑤 and 𝑆𝑓 in Casson case. 
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Fig. 14. 𝑓′(𝜂, 𝜉) vs. 𝑆 and 𝑆𝑇 in Carreau case. 

 

 
Fig. 15. 𝑓′(𝜂, 𝜉) vs. 𝑆 and 𝑆𝑇 in Casson case. 
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Fig. 16. 𝜃(𝜂, 𝜉) vs. 𝑆 and 𝑆𝑇 in Carreau case. 

 

 
Fig. 17. 𝜃(𝜂, 𝜉) vs. 𝑆 and 𝑆𝑇 in Casson case. 
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Fig. 18. 𝐆𝑟−3/4𝐶𝑓 vs. 𝜉 with 𝑅 and 𝑓𝑤 in Carreau case. 

 

 

Fig. 19. 𝐆𝑟−3/4𝐶𝑓 vs. 𝜉 with 𝑅 and 𝑓𝑤 in Casson case. 
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Fig. 20. 𝐺𝑟−1/4𝑁𝑢 vs. 𝜉 with 𝑅 and 𝑓𝑤 in Carreau case. 

 

 

 

Fig. 21. 𝐺𝑟−1/4𝑁𝑢 vs. 𝜉 with 𝑅 and 𝑓𝑤 in Casson case. 
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Table (1). Thermo-physical characteristics [27-29]. 

characteristic nanoparticles  Used model  

𝜌 𝜌𝑛𝑓 = (1 − 𝜑1)𝜌𝑓 + 𝜑1𝜌𝑛1
 𝜌ℎ𝑛𝑓 = (1 − 𝜑2)[(1 − 𝜑1)𝜌𝑓+𝜑1𝜌𝑛1

] + 𝜑2𝜌𝑛2
 

𝜌𝑐𝑝 

(𝜌𝑐𝑝)
𝑛𝑓

= (1 − 𝜑1)(𝜌𝑐𝑝)
𝑓

+ 𝜑1(𝜌𝑐𝑝)
𝑛1

 

 

 

(𝜌𝑐𝑝)
ℎ𝑛𝑓

= (1 − 𝜑2) [(1 − 𝜑1)(𝜌𝑐𝑝)
𝑓

+ 𝜑1(𝜌𝑐𝑝)
𝑛1

] 

+𝜑2(𝜌𝑐𝑝)
𝑛2

 

𝜇 𝜇𝑛𝑓 =
𝜇𝑓

(1 − 𝜑1)2.5
 𝜇ℎ𝑛𝑓 =

𝜇𝑓

(1 − 𝜑1)2.5(1 − 𝜑2)2.5
 

𝑘 𝑘𝑛𝑓 =
𝑘𝑛1

+ 2𝑘𝑓 − 2𝜑1(𝑘𝑓 − 𝑘𝑛1
)

𝑘𝑛1
+ 2𝑘𝑓 + 𝜑1(𝑘𝑓 − 𝑘𝑛1

)
× 𝑘𝑓 𝑘ℎ𝑛𝑓 =

𝑘𝑛2
+ 2𝑘𝑛𝑓 − 2𝜑2(𝑘𝑛𝑓 − 𝑘𝑛2

)

𝑘𝑛2
+ 2𝑘𝑛𝑓 + 𝜑2(𝑘𝑛𝑓 − 𝑘𝑛2

)
× 𝑘𝑛𝑓 

𝜎 

 

𝛽 

𝜎𝑛𝑓 = 1 +

3 (
𝜎𝑛1

𝜎𝑓
− 1) 𝜑1

2 +
𝜎𝑛1

𝜎𝑓
− (

𝜎𝑛1

𝜎𝑓
− 1) 𝜑1

× 𝜎𝑓 

(𝜌𝛽)𝑛𝑓 = (1 − 𝜑1)(𝜌𝛽)𝑓 + 𝜑1(𝜌𝛽)𝑛1 

 

 

𝜎ℎ𝑛𝑓 =
𝜎𝑛2

+ 2𝜎𝑛𝑓 − 2𝜑1(𝜎𝑛𝑓 − 𝜎𝑛2
)

𝜎𝑛2
+ 2𝜎𝑛𝑓 + 𝜑2(𝜎𝑛𝑓 − 𝜎𝑛2

)
× 𝜎𝑛𝑓 

(𝜌𝛽)ℎ𝑛𝑓 = (1 − 𝜑2)[(1 − 𝜑1)(𝜌𝛽)𝑓

+ 𝜑1(𝜌𝛽)𝑛1] + 𝜑2(𝜌𝛽)𝑛2 

 

Table (2). Thermo-physical characteristics of H2o, Al2O3 and Cu. 

Characteristic Water Alumina Copper 

𝑐𝑝(𝐽/𝑘𝑔𝐾) 4179 765 385 

𝜌(𝑘𝑔. 𝑚−3) 997.1 3970 8933 

𝑘(𝑊. 𝑚−1𝐾−1) 0.613 40 400 

𝜎(𝑆/𝑚) 0.05 3.69×107 5.96×107 

𝛽 × 10−5(1 𝐾⁄ ) 21 0.85 1.67 

𝑃𝑟 6.2   

 

Table (3). Comparison of Nusselt number with Ref. [30], Ref. [31], Ref. [32] and Ref. [33] while 𝑃𝑟 =  1.0, 𝑛 = 1, 

𝛽∗ → ∞ and 𝑀 = 𝐹𝑟 = 𝑆𝑓 = 𝑆𝑇 = 𝑓𝑤 = 𝜑1 = 𝜑2 = 0. 

 

𝜉 

 

𝐺𝑟−1 4⁄ 𝑁𝑢 

 

 Ref. [30] Ref. [31] Ref. [32] Ref. [33] Present 

0 0.4214 0.4216 0.4215 0.4218 0.4220 

𝜋 6⁄  0.4161 0.4163 0.4163 0.4165 0.4165 

𝜋 3⁄  0.4007 0.4006 0.4009 0.4011 0.4003 

𝜋 2⁄  0.3745 0.3741 0.3747 0.3752 0.3758 
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Table (4). Comparison of skin friction coefficient with Ref. [28], Ref. [29], Ref. [30] and Ref. [30] while 𝑃𝑟 =  1.0, 

𝑛 = 1, 𝛽∗ → ∞ and 𝑀 = 𝐹𝑟 = 𝑆𝑓 = 𝑆𝑇 = 𝑓𝑤 = 𝜑1 = 𝜑2 = 0. 

 

𝜉 

 

𝐺𝑟−3 4⁄ 𝐶𝑓 

 Ref. [30] Ref. [31] Ref. [32] Ref. [33] Present 

0 0.0000 0.0000 0.0000 0.0000 0.0000 

𝜋 6⁄  0.4151 0.4139 0.4150 0.4247 0.4124 

𝜋 3⁄  0.7558 0.7527 0.7557 0.7559 0.7530 

𝜋 2⁄  0.9579 0.9526 0.9578 0.9576 0.9583 

2𝜋 3⁄  0.9756 0.9677 0.9555 0.9551 0.9766 

 

Table (5). The various values of 𝐺𝑟−3 4⁄ 𝐶𝑓 and 𝐺𝑟−1 4⁄ 𝑁𝑢 for diverse values of  

𝜑1, 𝜑2, 𝑆𝑇, 𝐹𝑟, 𝑅 and 𝑓𝑤 when 𝑀 =  2.0, 𝑃𝑟 = 6.2, 𝑆𝑓  =  0.1, 𝑆 = 0.02 and 𝐾 = 1. 

𝜑1 𝜑2 𝑆𝑇 𝐹𝑟 𝑅 𝑓𝑤 
Carreau Casson 

𝐺𝑟−3 4⁄ 𝐶𝑓 𝐺𝑟−1 4⁄ 𝑁𝑢 𝐺𝑟−3 4⁄ 𝐶𝑓 𝐺𝑟−1 4⁄ 𝑁𝑢 

0 0.04 0.3 1.0 0.1 0.2 0.1120 1.0200 0.1455 0.9931 

0.01      0.1130 1.0246 0.1470 0.9974 

0.02      0.1140 1.0290 0.1485 1.0014 

0.03      0.1149 1.0331 0.1500 1.0053 

 0.02     0.1117 1.0220 0.1454 0.9949 

 0.05     0.1165 1.0384 0.1522 1.0103 

  0.0    0.1466 1.3885 0.1906 1.3335 

  0.2    0.1248 1.1320 0.1629 1.0977 

  0.4    0.1093 0.9599 0.1430 0.9365 

   0   0.1096 0.9606 0.1432 0.9369 

   2   0.1090 0.9593 0.1427 0.9361 

   4   0.1084 0.9580 0.1422 0.9353 

    0  0.1029 0.9196 0.1341 0.8997 

    0.4  0.1214 1.0621 0.1616 1.0326 

    0.8  0.1335 1.1853 0.1799 1.1489 

     -0.2 0.1821 0.2293 0.2691 0.1895 

     0.2 0.1335 1.1853 0.1799 1.1489 

     0.4 0.1036 1.7537 0.1323 1.7343 
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